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1, INTRODUCTION

The purpose of this report is to present a shorthand notation for matrix mani-
pulation and formulac of differentiation for matrix quantities. The shorthand and
formulac are especially uscful whenever one deals with the analysis and control of
dynamical systems which are described by matrix differential equations. There are
other arcas ot application Lat the conticl of matrix diffcrential equations provided
the motivation for this study. References [ 1] through [ 6] deal with the analysis and
control of dynamical systems which arce described by matrix differential equations.

Much of the material presented in this report is available elsewhere ir different
forms; it is summarized herein for the sake of convenience. Two references were
used extensively for the mathematical backgrornd; these are Bodewig (Reference [7])
and Bellman, (Reference [ 8]).

The organization of the report is as follows: In Secticn 2 we present the defi-
nitions of the unit vectors & and of the unit matrices E i In Section 3 we indicate
the use of the matrices Eij as basis in the space of n X n mat.sices. In Section 4 we
present several relations which can be used to decompose a given matrix into its
column and row vectors. Section S deals with operations involving the unit vectors
[ and the unit matrices Eij' In Section 6 we show how the trace function can be used
to represent the scalar product of two matrices. In Section 7 we define the differen-
tials of a vector and of a matrix and we also define the motion of a gradient matrix.
Section 8 contains a variety of formulae for the gradient matrix of trace functions.
Section 9 contains relations for the gradient matrix of determinant functions.

Section 10 contains relations involving partitioned matrices. A table summarizing

the gradient formulae of Sections 8 and 9 is also provided.
2. NOTATION

Throughout this report column vectors will be denoted by underlined letters and

matrices by underlined capital letters. The prime (') will denote transposition.




A column vector v with components ATASTERERA N is
© v
1]
v
2
v = (2.1)
v
L 1

In particular, the unit vectors e

y
- 7 I ~ 7
1 0 0
1 0
£ 7 ’ = seees EOF . (2.2)
_ 64 _0 ] ._1_1 )

An n X m matrix A with elements aij (i=1,2,...,n;j=1,2,...,m) is denoted by

a4y M2 v 4y
a a P a
21 2
A= 2 2 2m (2.3)
ani an2 e o anm

If m=n, then A is square. If A=A’ then A is symmetric.
The unit matrices ?'11 are square matrices such that all their elements are zero,

except the one located at the i-th row and j-th column which is unity. For example,



0 0 o ... 0

1112 = . - . (2l 4)

0 0 o ... 0

The unit marrix E'-lj is related to the unit vectors _c_i and Sj as follows:

E. =¢ e . (2.5)
=ij =i=j

The identity matrix [,

0 1 ... 0

_I_= . . . . . ¢ (2.())

can thus be written

noom
I=ZE._=Ze, el (2.7)
- 11! -1 "1

i=1 i=1
The one vector e is defined by
W
1 5
3 o= = e 12. 8\
= L =i ( )
i=1
b 1-
3



The one matrix K is defined by

[P
b= b ! =ee! (2.9)
1 1 ... U
The trace of an n X n matrix A is defined by
n
tr [A] =Za_, . (2, 10)
- ii
i=1
The tracce has the very usetul properties
tr{ A+ Bl = tr(A] +tr[B] (2. 11)
(2.12)

tr[AB] = tx[B A)

The determinant of an n X n matrix A will be denoted by

det [A] .

3. SPACES
We shall denote by

:VZ,-..,Vn

R_: the set of all real column vectors v with n components vy

M m: the set of all reul n X n matrices .
T

Both R and M are lincar vector spaces.,
n

111
The unit vectors 51‘2—2’ .o ,gﬂ (see Eq. (2. 2)) belong to Rn and, furthermorec,




‘orm a basis in R, Thus, every v € R can be represented by
1 - n

e 3.1
1™

Similarly the unit matrices B befong to M and they tarm o basis i M, Thus,
-] nn } n
every nxXonmatrix A€ Mnn can be represented by (o, are the ciements of A}

n {3
A :'-\ S ac b .2
= L L i)
i=1 ]:1
. . . , ) 2
The dimension of R“ is n and thc dimmension of MIm is .
Note that the traaspose A’ of A con be written as
n o n
A= D Na ok (. 3)
- Le L i —ij
i1 j=t

4, SOME USETFUL DECOMPOSITIONS OF A MATRIX

In this scction we shall develop certain formulaee relating a natrix, its elements,

and its row and celumn vedtors.

If A is ann X nmatrix we shall denote its row vectors hy “1*' .'12*. . 'ﬂ'n* arud
its column vectorvs by Dagrlagree sy Thus

. JJ"W "';l“_‘
iliz ”2.]'
aws | BT (4. 1)
in |y
S




and, so,

I~ y ' | - | -
pooop o Coy | S '
1 1 1 l | | | .
S R S I TN bl E T E 1 o (4.2)
SRR T R
—l i l | ; 1‘1 3 ] | 1 N

We emphasize that both types of vectors v and a,, are column vectors,
=] -
We shall now indicate how one can write the elements a,, and the row and column
1}

vectors of a mairix A in terms of A and in terms of the unit vectors ei {sce Eq.(2.2))

a,,=cf Ae =l Ale | (4, 3)
ij =i== =j=-i

e Al CH {the transpose of the i-th row of A) (4. 4)

al,=elA (the i-th Tow vector of A ) (4.5)

—* = - -

Ly = é_e-j (the j-th column vector of A} . (4. 6)

The element a,, can also be generated as follows:
1

., =gk 4.7
’ij -:l.\'lj'*j (4.7}
oY
g, =c¢h . 4,8
“ij T ix (#.5)

Next we shall indicate the relation of the row and column vectors of Aty the

clements of A, From Egs. (4.3), (4.4), (4.5]), und (4. 6) we deduce that




 ENANILR IR MR e s . . yam s

J_:
%

H]

b—.:
S«

J'(:

=1
n
it = B a_ e!
- Lu YT
j=1
b
a,. = a. e
=] Z ij =
i=1

A=ZZ' ¢=Z> e, e!
- 1]“'1"J Lo o1 U"J

i=1 J=1 i=1 J 1

From Eqgs. (4.12), (4.9), (4. 10) and (4. 11) we obtain

n
A= ¢, al,
- (e 171
i=1
and
n
= \, a,. ef
- =M
j=1

5. FFORMULAE INVOLVING THE UNIT MATRICES h""lj

First of ail if we define the Kronecker delta 6ii

(4. 9}

(4. 10)

(4,11)

. (2.5) and (3. 2) we have

(4.12)

(4,13)

(4. 14)

o~
an
B
-
—




then we have the relation

ele =e¢le =6 . (5.2)
i T o Gl

The following two relations relate operations between unit matrices and unit vectors

{sec Eq. (2,5))

= 4 = .3

Eij L H 6jk e, (5.3)
! = ¢ ! = ! . .4
Sk _E.:ij £x&4 55 Oi <5 (5.4)

The following relations relate unit matrices

») E [ = Y4 = E . 5. 5
‘E:IJ Zkm e_] E‘-k 6jk-?-i§'-m <5jk —irn 5.5)
It follows that
E.E. = 3.2.=5..E..=6..E.. (5. 6)
—ij—ij =ij ji—ij ij=1ij
E =5 E =E 5.7
=ij —jk lsJJ--ﬂ( —ik 6.7
E E. =E. (5. 8)
—=jj—ji —ii
EY =B, as42,... (5.9)
—ii  =ii
c.E E =E E =E . 5.10
éij Ejk-—km —ik—km —im ( )
Equation (5. 10) generalizes to
E E E . ... E . ;E‘i . (5. 11)
Tl T2l Tlg-1'p T
8

-




We shall next consider the matrix _I_*Jij A. From Eqgs. (3. 2), (4. 10), and (5. 5)

we establish that

n n n 1
g A
E A=l ) A k=) - i E
-ijl- —=ij /o l“'/f—“'li Ly Z d”ﬁ Eij EG’B
(}':]ﬁ:f] =1 B::'l
n n N n
= \ a &6 R => a B = Ya e e .12
D Dt o kig ™ DB T ) s (5. 12)
=1 f=1 B=1 B=1

4 ¥, = < 4 5. y
Similarly we can establish that
AL, ~u, of (5. 14)
——ij —"i=j
and that
., AR = E . (5.15)

Y., M = 4, Y,
=ij ==k jk =im

6. INNER PRODUCTS AND THE TRACL FUNCTION

Supposce that v and w arce n-vectors (clements of Rn) ; thien the common :calar

product

(LW =yiw=wly =) vw (6. 1)

is an inncr product,
In an analogous manner we define an inner product between two matrices. Lot
us supposc that A and B, with clements uij and bij respectively, are clements of

M n’ It can be shown that the mapping
nt




(,B) = [ AR 22 .
~'= 1_]1

i=1 j=1

has all the properties of an inner product because

tr[AB'] =tr[B A’]

r[AB’]=rtr[AB'] (r: real scalar)r

tr[(A+B) C’] =tr[AC'] +tx[BC'].

We shall present below some interesting properties of the trace.
n
Al=Da
ufal= L i
i=1
and since {see Eq. (4. 3))
a, =el Ac,
i —i==i
then
n
tr[ A ] =Zc', Ac,
- —i—=-i
i=1

From Eqs. (6.8), (4.5), and (4.6) we also obtain

10

Since

(6., 2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6. 10)




Now we shall consider tr[ i[&_] . From Eq. (6. 8) we have

Ao

t{AB]=) ¢t AB (6. 1)

1

€,
=

i
We can also express the tr[ A B ] interms of rthe column and row vectors of A and B,

From Egs. (6. 11), (4.5) and (4.0) we have

n
tr[ AB | =\ aly by . (6. 12)
i=1
Since (sce Eq. (2. 12))
trlAB] =tr[BA] (6.13)

we obtain similarly

—’i* ﬂ*i (6.14)
i=1
and that
L2
tr[AB]=\ Za b, . . (6.15)
=1L LTk ki .
i=1j=1
Similarly we deduce that
n
er[AB] =) al, b, .16
i=1
LY
tr{ AR’] =\ 3'*1 E*i . (6.17)
i=1

Another very interesting formula is the following. Let v and w be two column

vectors; then v w? and w v/ are n X n matrices. Hence, by Eq. (6. 8),

11




trvw’] =) el vw e
- = Lsy—1i— — 7
i=1
But
\
el v = v,
-1 i
wle =w,
- = i
and, so, a
tr{v w’] =Zv, w, =wv
— emma 1 1 — -
i=1
Since
tr{v w'] =w'yv
trfwv/] =v'w
and,so,

[y w'] =tfwy'] .

Next we consider trfAB C ]. From Eq. (6.8) we have

n
t{ABC] =) e ABCe,.
i=1
It follows that n
tr[ABC] =Z.§.’* Bey
i=1
Since n
B =Ze_ b?
= =i =j*
j=t
12

(6.

(6.

(6.

(6.

(6.

(6.

(6.

(6.

(6.

=N
ac
-

19)

20)

21)

22)

23)

24)

25)

26)




we can also deduce that

n o
GIABCT= ) ) alegBlacy - (6.27)
i=1 j=t1

Additional relationships can be derived usiig the equations

t{ABC] =t[BCA] =t[CAB]. (6.28)

7. DIFFERENTIALS AND GRADIENT MATRICES

The relations which we have established will be used to develop compact nota-
tions for differentiation of matrix quantities,

Let x bea column vector with components x1, x2, oo xn. Then the differential
dx of x is simply

(7. 1)

Now let f(*) be a scalar real valued function so that

A
f(x) =f(xi,xz,...,xn) .

The gradient vector of f(-) with respect to x is defined as

13




[ 81(x) ]
8)(1
of(x) .
81(_ = (7'2)
3f(x)
o
— n —d L
For example, suppose that n=2, and that
- 1 2
f(l‘.) = f(xi,xz) = \Zox1 +x,l X, + 2x2 .
Then
6)(1 + x2
of(x)
8}_(_ -
Xi + x2
b il
Now let X be an n X n matrix with elements xij (i,j=1,2,...,n). The
differential d)£ of X is an n X 1y matrix such that
dxii dxiZ T d'xin
dX = dx21 dxz2 .. dxzn (7.3

Note that the usual rules prevail:

14




d(;l}_(_) = ad )‘(_ (a : scalar) (7. 4)
d()i-f*!) = dX +dY (7.5)

d(X Y) = (@X) Y +X(dY). (7.6)

From (7.6) we can obtain the useful formula developed below,  Suppose that

1

X=Y (7.7)
50 that
XY =1 (the .dentity matrix) (7. 8)
and,so,
(d_)f_)y_ﬂ—)i(d‘i):dI_:_(_. (7.9)
It follows that
=1
dX = - )_(_(d}_{_)l (7. 10)
and that
-1 -1 -1
d(yY =-Y (d\i)‘i . (7.11)

Next we consider the concept of the gradient matrix, Let X be an n X n matrix

with elements Xij' Let {(+) be a scalar, rcal-valued function of the Xi" i.e.

Y= f 2
f(x) f(x“,...,xm,xu,...,xzn,...). (7.12)
We can compute the partial derivatives
f(X)
——— v Li=h 2,000, (7.13)
th)
1]
15
CONGREIET T e e | SR e e —



f(X )

We define an n X n matrix Sk called the gradient matrix of f(X) with respect to

X, as the matrix whose ij-th element is given by (7. 13). We can use Eq. (4.12) to

precisely define the gradient matrix as follows:

or, from L, (3. 2), to write

af(X)

8X _i]
of(X)
8X T ij

DE(X)

e, = c!
io=] z)xi. =]

J

2E(X)

axij —ij

For example, suppose that X is a 2X 2 matrix and that

2 3
XD =%y Xoq T ¥pq = XgyXypXyp ¥ Sy
Then ~ -
2X41%94 " Xpn ¥4y 11 %22
DE(X)
X
+3'2 +5 “X,, X
_"11 Xy X11*12

0 otherwise

16

(7. 14)

(7. 15)

(7. 10)




A uscful formula is as follows:

d X .
X = —=— = [ (7.17)
dx = dx =i
1 1 ‘
X=X, ioed if X s symmetric: then Xii = xji for all i and j. Clearly the

differential dX is symmetric and
dX = dX’ (7. 18)

X)) = dX . (7. 19)

5. GRADIENT MATRICES OF TRACE FUNCTIONS

In this section we shall derive formulace which are uscful when one is interested
in obtaining the gradient matrix of the trace of @ matrix which depends upon the ma-

trix X. Throughout the section, we shall assume that X is an n X nomatrix with

celements x,j sucht thut
1

1 if =i, iRy

-~ = ﬁ (\“;. 1)

) otherwise

Iirst, we shall compute

Jd
—— 4 Y ‘)
o I1H\_ | (8,2

Since the differential and the trace are liocar operators we have
dt[X] =t dX . (8..1)

Henee, inview of (7.17)

B (8.4)

17
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From {7. 15) and {8. 4) we have

3
— = 2 i E ;
But
tr| & =6, . O
It follows from (8. 3) and (8. 6) that
3 . ,
—tr[X]=26 E  =XE . 8.7
X r[X] gy (8.7)
In view of {2.7) we conclude that
P
< . o ;
-(:)ztr[)_(_] =1 (8. 8)
Next we shail compute the matrix
-—§-rr{ AX] . (8.9)

X .-

Proceeding as above we have:

] by {7.17) .

But




0 U
s [AX |7 20— A X! by (7. 14))
a -a - . IS 5 Wy (/.
ax thoki a"ij J
= e tr]AE Jef (by (8. 10))

= e e AL e e b 6. 8
S S RS (by (6.8)
= 2 E AL I v (2
ik =ik = =ij=kj (hy (2.5
= X K Ad K. by (5.9
ijk_‘k" ik ~ij (hy »
= 2 E AL
ij =1] = 1]
= 2 a, b, by (5. 15
D i By (by ( )
= A (hy (3.3)

Thus, we have shown that

— ulAX]= A (8. 10)

In a completely analogons wanner we find the following

a

——— ~ J - !

gulaxl=a (3. 11
d o R

3&‘1[ AX'l=A ¥ 12)



5x t{AXB] = A'B (8.13)
9 AX? -

v ClAX'B] =84 (8. 14)
D - :
O trfA X1 =4 (8. 15)
9 , .
i C (8. 16)
o :

sx: WAXB]=BA (8.17)
8 ! Ayl

sxr TAX'B] = A'D (8. 18)

A usctul Temima (which was proved in the derivation of Eq. (8. 10)) is the following:
Lemma 8,1

] 3] :
If =—trfAX]=tr[AE, ], then~—=tr[] AX] = A",
W {AX) =or[AL ], thenmem t{ AX] = A
i =

Next we turn our attention to the derivation of gradient matrices of trace
functions involving quradratic torms of the mutrix X.

Consider

2

o)
o X (8. 19)

Since

dtr[)_gz] = tr[d)_(_z] =tr[XdX +(dX)X ]

= t[X d X ] + e (@X)X ]

=tr[XdX]+u[XdX]=2t[XdX] (8. 20)




we conclude that

2 t 2 X ot =2 B
ax.. &)= 20X dx, tr[)_(___”.]
i ij
It follows from Lemma 8. 1 that
a - ’
ox X 1=2X
Ia @ similar fashion onc¢ cun prove that
2 N X ] =2X
a)i - — -
Next we consider
0 trl A XBX
ox TLAXBX]

Since

= [ AUX)B X ] + 1 A A X B(dX)]
=B X AX)] 4+ tr] AX B(dX)]

tx[(n XA+ AX h)(<.X)]

we conclude that

B UTAXBX) = ATXIB 4 prxra

(8.21)

(8 22)

(8. 23)

(8.24)

(3.25)

(8. 20)



Next we consider
——tr[é'g_(_g)_(_'] . (8.27)

Since

dtr{AXBX'] =tr[AWX)B X'] +1tr[ A X B(dX')]

=tr[(BX/A +B'X/A") (4X)] (8. 28)

(because (dX’) = (dX )’ and because tr[ Y] =tr[Y'] for all Y ), it follows that

-a—x-tr[é,

1<

BX']=AKE +AXD (8.29)

The following two equations involve higher powers of X and they are easy to derive

J -1 -1
—tr[X"] = nx) = (x"T’ (8. 30)
oxX = - -
') - - -' - -
s olax = ax™ exax™ et ™ e )
(8. 31)
Equation (8.31) can also be written as
n-1 ,
9 . n i n-1-i -
335"[&’5_]:2’.‘.’1’1 (8. 32)
i=0




The two formulac above provide us with the capability of solving for the gradient

mairices of trace functions of polynomials in X . A particular function of interest is

the exponential matrix function ¢= which is commonly defined by the infinite series

X 1o 1.3 . 1 i Y.
‘_..._:_I—+)£+ 2_! + .__;_!X +.“:Z-i—!-)—(' . (8.33)
i=0
We proceed to evaluate
d X . ,
gzrx-[e-] : (8.34)
Since
o _1 o
trfe”]=tr | ) — x| = \> -.—tr[Xl] {(8.35)
L 1V =} FAVED § —_
i=0 J i=0

we can use 12g.(8. 30) to find that
3 X, _ X :
X leTl=e (8.30)

(X "1 . (8.37)

We shall next compute

First recall the relation (see Eq. (7.11))

-1 -1 -1
aX' = eXT WX . (8. 38)

N

it follows that

d tr[)i'1 | = tr[d)i'i] = -tr[)i-1(ci_)£))£—1] (8. 39)




and, so.

9 -1 -1 4X g
X, tr[X ] =-tr [)i T X ]
ij 1]
= e X'k X7
= -Lr[)i"‘_h_:ij] _ (8. 40)
From Eq. (8.40) and Lemma 8. 1 we conclude that
d -1 2.1
_é')ztr[)i 1=-(X") (8.41)
T a similar fashion we can show that
-1 - -1 ¢ .
sl AX B =X BAXT) (8.42)

Y. GRADIENT MATRICES OF DETERMINANT FUNCTIONS

The teace tr{X ] and the determinant det[X | of a matrix X arc the two most
uscd scular functions of a matrix, In the previous section we developed relations for
the gradient matrix of trace functions. In this scction we shall develop similar rela-
tions for the gradient matrix of determinant functions.

Before commencing the computations it is necessary to state some of the
properties of the determinant function, Let X be an n X n matrix. Let 7\1. >\2, vens hn
be the eigenvalues of X ; for simplicity we shall assume that these cigenvalues are
distinct, It is always true that the trace of X equals to the sum of the cigenvalues

¥ 4

whiie the determinant of X is the product of the cigenvaiues; in other words,

24




“'[)i]:)‘1“‘2+'"”\n (9. 1)

W} - Q.’
det[ X ] /\l)\'l'” 7\“ . (%.2)

The determinant has the following propertics:

det[X Y ] = detf X det[ Y] (9. 3)
det X + Y | £ det] X ] +det][ Y] (9. 4)
det[1] =1 (9, 5)
det[X7T) = e X ] (9. 6)
det[ X" = (et X)" 9.7
det]X | =det[X! ] . (9. 8)

I this section we shall use A to denote the diagonal matrix, whese diagonal

is formed by the cigenvalues of X, i.c,

— -
; ) I
vy )
0 A, .. 0
A - B (9.9)
I B A .
l‘l_
Clearly
A = Nyt Ay o A (9. 10)
detfAT=2, 2, .00 A (9. 11)

and, so,




trf X ] =tr[A] (9. 12)
det[ X ] = det[A]. (9. 13)
Using the differential operator we have
der{X]) = d(tx[A]) (9. 14)
d(det[ X ]) = d(det[A ]) . (9. 15)
Now we compute the differcntial of det{ X ] (provided X is nonsingular)
d(det[ X 1)= dAa, A, ... .\n)
= (dAi) /\2 7\‘,‘. .o }\n + )\1 (d}\z) }\3. . e An

Feee kAN, A (A )

dl1 dAz dA
= (det[ AN == + —= 4.0 4 — . (9. 16)
- A A, A
1 2 n
We note that we can identify
\p__ 4 -1
/o =tr[A dA] and, so,
=t
in view of (9. 13) we have
-1
d(det[ X ]) = (det{ X tr[A "d AT . v.17)

26




We shall now prove the following tena

Lemma Vo b I X is nonsingalar and if it has distinct cigenvalues 7\1. Ayve WA

 — E4 1}

then

- -1
U ENREVRET Py (9. 18)

Proolt X and A are related by the similarity transformation

-1
AP XP. (9. 19)
Thus
-1 -1 =1 ,
.1=£ X b (9, 20)
From Eq, (9. 19) we have
PA=XD (9, 21)
and, so,
(dl_’) /_\_ +I_’(d .l) = (d)_{_ )_l_: + )_:'_('d_l_’_) . (9, 22)
It follows that
-1 -1, -1, .
<l‘_‘\_ =P (d)_\_)_EJrB )_\_(d_l:) -2 (cll:) !l . (9. 23)

From Lgs. (9. 12), (9. 20) and (9, 23) we obtain
- -1 = -1 -1 - -
R R S S VS S (e ST B U2

- T x e

-1 - -1 Sy -1
=TT @ -2 X W X R
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Forming the trace of both sides and using the propertios (2. 1) and (2, 12) we find

tr{A dA ] = 1r[X dX] (9. 25)
Q. kLD,
Using Eqs, (9. 18) and (9. 19) we arvive f
afdet [ X ]) = (det [ X ]) tr[)_(_-1d>£] . (9. 20)

We can now compute the gradient matrix of det{X ], i e the matrix

d o .
-,(_‘;g det| X . (9.27)
From (9. 20) we have
3 _ -1 UX
I det[X ] = (det[X]) lr[)ﬁ -dT—]
i) i
= det[X] u] Ji"g.ii] . 28)

and, so, Loemma 8,1 ylelds

d : -
X det [)_(_] = (det [)_(_]) 0.4 1)' (Y. 29)
If we write Bqg. (9, 20) in the more suggestive form
d(det[ X ]) 1
=tr{X dX] (9. 30)
det [X ]

¥ Eaquation (9.26) is true even if the cigenvalues are not distinet; see Ret [ 7], p. 35,

o




we can see that

-
dog det | {(_]) = lx'[)_\'_ d)i | (9.31)
and that
o “i
Sy logdet X ] = (X )’ (9. 32)

(i most gsetul relation). Using the property (9.3) of the determinant function it is

casy to prove that

- _ - |
S et AXB] = (et [ AXBD(X ) .33

Also, 1t is casy to show (in view of (4. 8)) that

J , 0 , ,
oY det[X 7] = Y det| X ] (9.34)
o the obvious relation
1 , 1l n-1 o
d@det [X ] = didet | )_\_]) = afdet | X 1) d(det X ) (4. 135)
wo conclude vhat Eq, (9. 20) yields
g, u -1 )
didet [ X7 D= u(det [ X ) tr{ X dX ] (9. 30)
and =0
d n AR D WY 19
TX dut [)3_ | = n@det[ X 1) (X ) (9.37)




10,  PARTITIONED MATRICES

It i~ often necessary to work with partitioned matrices, The following formuiae
are very useful,

Consider the n X nmatrix X partitioned as follows:

~ 7
X s
=11 E X2
]
&: ------- .- ——————— (1(). 1)
|
a0 1 Xy
where
s > ' -
2(_“ is n1 n1mdt11x
Xi,‘ is n1 X n,, niatrix
-2 2
. 5 s
)i;“ is nz n1 matrix
_)522 15 :12 X n,.Z matrix

. . -1 - .
Assume the necessary inverses exist and that X is also partitioned as in

(10, 1), Then

x textx oattx o x7! E x Vx oAt |
-11 11 =12= Soien ' -1 =12 =
]
-1 :
X = | e  ERLEETTIEE (40. 2)
Al X NS
2 2424, 2

where

-
§ >

“X, KX . (10. 3)




From (10, 2), the following is obtained.

, VTR ot -1 -1
Ry 20X S5 X o X X &, -2, X X)) X, Xy (10. 4)
with the special case
-1 -1 -1
(1+X) 7 =L-+x )7 (10.5)

o , -1
det{X ] = (lcl[)i11 - ,‘_}.1) )_(_22 )iM ]dcl[l(_zz] (10. 0)
tr[i(_]-(1'[)_(.“]+l,r[)_(_22] . (10.7)
It Y is also partitioned as in (10, 1), then
— |
. ) ¥ r ’ Ny
Epplar P8 0 LYt ind,
1
XY = | e e (10, 8)
L)-i'.’ix‘ﬂ * )-"22 —’21 E (-/'21}:-1’ ¥ 2(-2.’ -,-13




TABLE OF GRADIENTS

2 X rlAX] = A
) :
3 Wtr[é)_\'_’]=ﬁ
0 m?
o px wlAXB]=A'B
oo X WIAN'B]=BA
0 :
o Frw[AX]=A
Y : ' '
7. smur[AX']=A
_ J
o oxe[AXB]=BA
J I n tar
xrrAXE] = AT

", -— tr| X )_{.]=Z)£’

1, = u|XX'] =2X
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13,

14,

15.

16,

17,

18.

19,

1)

axX

d

J

JX

.u-[;i'i] =..(}_(_" X ) == (X

wlax s maxh’

det [X ] = (det [X]D (X )

log dei| X ] = ()1-1)’

G AX B] = (et [AXB] XD

- det [X'] =% det [ X ] = (det[X]) ()_(_-1)'

det | X" ] = neet | X DM x "y
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